Long Range Movement and Homing by Largemouth Bass (Micropterus salmoides) in a Thermally Altered Reservoir
Author(s): Thomas Quinn, Gerald W. Esch, Terry C. Hazen, J. Whitfield Gibbons
Reviewed work(s):
Published by: American Society of Ichthyologists and Herpetologists (ASIH)
Stable URL: http://www.jstor.org/stable/1443627
Accessed: 12/04/2012 23:13

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Society of Ichthyologists and Herpetologists (ASIH) is collaborating with JSTOR to digitize, preserve and extend access to Copeia.
GILBERT, P. W., AND G. W. HEATH. 1972. The clasper-siphon sac mechanism in Squalus acant-
thias and Mustelus canis. Comp. Biochem.
Physiol. 42A:97–119.

HORSON, E. S. 1963. Feeding behavior in three

JOHNSON, R. H. 1978. Sharks of Polynesia. Edi-
tions du Pacifique. Papeete, Tahiti.

MYRBERG, A. A., JR., AND S. H. GRUBER. 1974. The
behavior of the bonnethead shark, Sphyra

RANDALL, J. E. 1977. Contribution to the biol-
ogy of the whitetip reef shark (Triaenodon

No. 2:17–22.

discrimination in blacktip sharks, Carchar-
hinus melanopterus, and gray sharks, C. menisor

WOURMS, J. P. 1977. Reproduction and develop-
ment in chondrichthyan fishes. Amer. Zool., 17:
379–410.

RICHARD H. JOHNSON, SEA Institute, Inc., 2018
Pacific Ave., Long Beach, California 90806,
and DONALD R. NELSON, Department of Biol-
ogy, California State University, Long Beach,
California 90840. Accepted 26 Nov. 1977.

LONG RANGE MOVEMENT AND HOM-
ING BY LARGEMOUTH BASS (MICROP-
TERUS SALMOIDES) IN A THERMALLY
ALTERED RESERVOIR.—Par Pond is an
1,120 hectare cooling reservoir for a nuclear
production reactor, located near Aiken, S.C.
Water temperatures in the reservoir vary sea-
sonally and with changes in reactor power
levels. Mean maximum temperatures at the
heated end of Par Pond (Fig. 1) generally ex-
ceed those in ambient areas by about 10 C. Bass
taken from thermally altered portions of the
reservoir differ in consumption of food items
(Bennett and Gibbons, 1971), densities of in-
festation by acanthocephalan parasites (Eure and
Esch, 1974), incidence of infection by Epistylis
sp. and Aeromonas hydrophila (the causative
agents of red-sore disease, Esch et al., 1976) and
body condition. The implication of these stud-
ies is that movement of bass between heated and
non-heated portions of the reservoir is not ex-
tensive and that individuals usually remain
within a prescribed area of the lake.

Previous mark-recapture studies in Par Pond,
provide evidence for long-range movement in
some instances and restricted home ranges in
others. For example, Gibbons and Bennett
(1973) examined movement between an area
adjacent to the inflow of thermal effluent and
another area in an ambient temperature loca-
tion approximately 6 km distant. Of 3,000 bass
tagged and released, 95 were recaptured. Five
had moved from the thermal to the ambient
temperature location and five others had moved
from the ambient to the thermal location; each
of the other 85 was recaptured at the site of its
initial capture. Dupont (1976) observed long
distance movement (up to 12 km) by several
Par Pond bass in which sonic tags were placed.
He indicated that movement was apparently
influenced by reactor operations.

The apparent dichotomy of results regarding
long-range movement of bass in Par Pond,
coupled with an interest in assessing the phe-
nomenon of home range in a thermally altered
reservoir suggested the need for additional
mark-recapture studies. It was also felt that
such an investigation would permit us to either
confirm or reject implicit assumptions concern-
ing restricted bass movement in Par Pond in
previous studies.

Materials and methods.—From September, 1974
through August, 1975 more than 2,000 large-
mouth bass, Micropterus salmoides, were cap-
tured by electrofishing in Par Pond. Approxi-
mately equal numbers were taken in heated
(HOT-HD, -BB, -OB and -GB; Fig. 1) and
ambient areas (COLD-NC, -SS, -CD, -KB, -LL
and -DL). Variability in sample sizes at differ-
ent sites is primarily due to differential time
and effort given to electrofishing rather than
to disproportionate local densities or amount of
surface area sampled. All bass were weighed
and total and standard lengths were taken. Fish
were marked with a number, color-coded, Peter-
son tag and released. Bass from HOT-HD, -BB
and -OB were released at Site I; bass from
COLD-CD were released at Site II; bass from
COLD-NC were released at Site III. All other
bass were released at the site of capture.

Results.—Of 2,100 bass caught, tagged and re-
leased, 188 (8.9%) were recaptured (Table 1);
100 of the recaptures were from thermal sites.
Most of the bass from the thermal areas were
tagged at HOT-HD (N = 575) and released at Site I; 48 (83%) were recaptured at HOT-HD while six (10%) had moved to HOT-BB. Two others were recaptured at HOT-OB, the thermal location across open water from the release site. One had moved down the heated arm to HOT-GB and a single individual from HOT-HD was subsequently recaptured out of the heated portion of the lake. Of the bass tagged in HOT-BB, released at Site I, and subsequently recaptured, 11 (73%) returned to HOT-BB; the others had moved in the other direction from Site I and were caught at HOT-HD. Of the 214 bass caught at HOT-OB and released across the lake at Site I, 25 were recaptured; 14 (56%) returned to HOT-OB, 10 (40%) were caught at HOT-HD and one at HOT-BB. Thus, of 100 recaptures of bass originally tagged and released in heated areas, one (1%) was subsequently recaptured in an ambient location and 99 (99%) were recaptured in heated areas. Furthermore, the majority (75%) returned to the specific site of initial capture, despite being released at a central location.

Of 88 recaptured bass originally caught and tagged at ambient sites, eight (9%) had moved to thermal locations. Of 29 recaptures from COLD-NC, 24 (83%) returned to the same site while four were recaptured at HOT-HD. One had moved to another ambient temperature site, COLD-CD, more than 6 km away. Of the 28 bass tagged at COLD-CD and subsequently recaptured, 24 (86%) were at COLD-CD; one was caught later at COLD-SS and one at HOT-HD. At COLD-SS (N = 125), 14 (78%) of 18 recaptures were from the same site; two others had moved to other ambient temperature locations, while two were later caught at HOT-HD. Bass tagged at all other ambient sites were recaptured at the same locations.

A total of 13 (7%) of 188 recaptured bass had moved between nonadjacent collecting sites which were at least 1,600 m apart. Of these, three moved between ambient locations, one moved from a heated to an ambient site and eight moved from ambient to thermal areas (Table 1). The mean total length of bass which had moved long distances was 44 cm; that of bass which were recaptured at the sites of original capture was significantly lower, 39 cm.

Double recaptures were made on 15 bass; 11 were at the original site of capture each time, whereas four had made minor moves to adjacent locations within the heated area. The two triple recaptures had moved long distances (>1,600 m), and then returned to the site of original capture. One moved a distance of 12 km from COLD-NC to HOT-HD between 15 April and 5 June 1975, and was recaptured at COLD-NC on 21 July 1975.

Discussion.—The present study supports the findings of others (Hulse and Miller, 1958; Dequine and Hall, 1949; Moody, 1960; McCann and Carlander, 1970) who report that largemouth bass are capable of moving long distances. However, our data suggest that long distance movement by largemouth bass in Par Pond is exceptional rather than characteristic and occurs with greater frequency among larger individuals. Movement between thermal and ambient locations occurred, but infrequently. Furthermore, recorded movement was more frequent from ambient to thermal locations than from heated to ambient. This may explain the contrasting conclusions (Clugston, 1973; Gibbons and Bennett, 1973; Dupont, 1976) about the frequency of long distance movement in Par Pond. A fish of substantial
TABLE 1. NUMBERS AND LOCATIONS OF ORIGINAL CAPTURES AND RECAPTURES OF LARGEMOUTH BASS (*Micropterus salmoides*) FROM A SOUTH CAROLINA RESERVOIR RECEIVING THERMAL EFFLUENT FROM A NUCLEAR REACTOR. See Fig. 1 for locations of code designations. HOT—indicates location in thermal region; Cold—indicates ambient temperature site.

<table>
<thead>
<tr>
<th>Code designation for capture location</th>
<th>Number captured</th>
<th>Number recaptured</th>
<th>Number recaptured at orig. site</th>
<th>Number recaptured in same temperature region</th>
<th>Number recaptured in different temperature region</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOT-HD*</td>
<td>575</td>
<td>58</td>
<td>48</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>HOT-OB*</td>
<td>214</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>HOT-BB*</td>
<td>199</td>
<td>15</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>HOT-GB</td>
<td>27</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1015</td>
<td>100</td>
<td>73</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>COLD-NC**</td>
<td>333</td>
<td>29</td>
<td>24</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>COLD-CD***</td>
<td>331</td>
<td>28</td>
<td>24</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>COLD-SS</td>
<td>145</td>
<td>18</td>
<td>14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>COLD-KB</td>
<td>137</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COLD-LL</td>
<td>68</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>COLD-DL</td>
<td>44</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COLD-JB</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1085</td>
<td>88</td>
<td>74</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

* These bass were released at Site I (Fig. 1). ** These bass were released at Site II (Fig. 1). *** These bass were released at Site III (Fig. 1).

Acknowledgments.—We thank James R. Mathews, James C. Murphy, Thomas M. Murphy, Jr., John W. Coker and Gene Peterson for aid in collecting and tagging bass. Ms. Jean Cole—

size must be used for surgical implantation of sonic equipment in the abdomen. We suggest, therefore, that selection bias for large individuals results in the use of fish which would be more likely to move long distances. Until sonic equipment can be miniaturized further, interpretations of the results from such studies must be cautiously considered.

Displacing bass from their home ranges by releasing at a central location, did not influence the probability of their return to the original capture site except when the release point and the original capture site were separated by open water. Individuals captured at HOT-HD or HOT-BB and released at Site I, had a choice of moving either direction yet more than 80% of those recaptured had returned to their site of original capture. The presence of deep, open water between the release point and the original site of capture appeared to lower the likelihood that bass would return. Thus, only 56% of the bass caught initially at HOT-OB and released at Site I, were subsequently recaptured at HOT-OB. However, 40% were recaptured at HOT-HD which is enroute to HOT-OB, as if a fish were following the shoreline.

A significant aspect of this study relates to earlier (Eure and Esch, 1974) and current work (Esch et al., 1976) attempting to show differences in parasitism between bass from thermal versus ambient locations. These investigations were based on the assumption that exchange of individuals between points within the lake is not extensive, especially between thermal and ambient locations. Results of the present study confirm this assumption.

Yardley et al., 1974, reported that allelic frequencies for selected loci in Par Pond bass did not vary throughout the reservoir. This implies a panmictic population with genetic exchange between areas. Results of the present study do not refute this conclusion as the low percentage of long range migrations observed would permit a level of genetic mixing sufficient to maintain allelic frequencies if strong selective forces are not in operation. Thus, Par Pond probably harbors subpopulations which genetically overlap extensively with those in adjacent areas and partially with other more distant areas of the lake.
man prepared the figure. The study was supported by Contract (E-38-1)-819 between the U.S. Energy Research and Development Administration (ERDA) and the University of Georgia and by Contract E(38-1)-900 between ERDA and Wake Forest University, Winston-Salem, N.C. The senior author was supported by NSF Undergraduate Research Participation grant No. GV-11167.

Literature Cited

McCann, H. E., and G. W. Esch. 1974. Effects of heated effluents on the population biology of trout, Salmo gairdneri, and kokanee fry, Oncorhynchus nerka (landlocked sockeye salmon), were stocked in the reservoir in the spring season of 1971. According to McPhail and Lindsey (1970), *E. tridentatus* continues to spawn in portions of the Columbia River now cut off from marine migrants by impassable dams, but no evidence of parasitism in these landlocked situations was given. We report the occurrence of a landlocked parasitic population of *E. tridentatus* in Dworshak Reservoir, the man-made impoundment behind Dworshak Dam on the North Fork of the Clearwater River, Columbia River drainage, north central Idaho. Before construction of Dworshak Dam, Pacific lampreys spawned in many tributaries of the North Fork of the Clearwater. However, by fall 1969 construction had progressed to the point that most anadromous fishes were blocked from continuing their upstream spawning migrations. The gates were closed in September 1971 and the reservoir began filling during the following fall and winter. Catchable rainbow trout, *Salmo gairdneri*, and kokanee fry, *Oncorhynchus nerka* (landlocked sockeye salmon), were stocked in the reservoir in the spring seasons of 1972 and 1973.

A creel census was conducted during the angling seasons of 1973–1976 to evaluate stocking and other management programs on Dworshak Reservoir (Ball and Pettit, 1974; Pettit et al., 1975; Pettit, 1976). Data collected by interview included species composition and numbers of catch, incidence and position of lamprey scars and observations on size and depth of scars. Occasionally anglers retrieved lampreys attached to captured fish. Six specimens were...